Applied Ocean Research 17 (1995) 21-32
Elsevier Science Limited
Printed in Great Britain

0141-1187(94)00016-6

Hopf bifurcations and nonlinear studies of gain
margins in path control of marine vehicles

Fotis A. Papoulias & Zeki Okan Oral
Department of Mechanical Engineering, Naval Postgraduate School, Monterey, CA 93943, USA

(Received 21 July 1993; accepted 28 June 1994)

The problem of loss of stability of marine vehicles under cross-track error control
in the presence of a mathematical model versus actual system mismatch is
analyzed. Emphasis is placed on studying the response of the system after the
initial loss of stability of straight line motion. Center manifold reduction and
integral averaging methods are used in order to study bifurcations to periodic
solutions and stability of the resulting limit cycles. Numerical integrations are
used to confirm the theoretical results and to establish regions of asymptotic
stability. The methods used in this work demonstrate the significance of nonlinear
terms in assessing the response of the system.
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Linear yaw rate coefficient in first order model
Cubic yaw rate coefficient in first order model
Closed loop dynamics matrix for the linearized
system

Rudder angle coefficient in first order model
Heading angle, yaw rate, or position error gain
factor

Critical value of heading angle gain factor
Critical value of yaw rate gain factor

Critical value of position error gain factor
Integral of Time Absolute Error, [ tle|dt
criterion

Vehicle mass moment of inertia

Heading angie gain

Yaw rate gain

Position error gain

Cubic stability coefficient

Vehicle mass

Derivative of yaw moment N with respect to the
indicated variable

Naval Postgraduate School
Poincaré—Andronov—Hopf bifurcation

Yaw rate

Polar coordinate of transformed reduced system
Time

Limit cycle period

Matrix of eigenvectors of A

Sway velocity

State variable vector

Deviation off the commanded path
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Y; Derivative of sway force Y with respect to the
indicated variable

z State variables vector in canonical form

z1,zp  Ciritical variables of z

Z3 Stable coordinate of z

) Rudder angle deflection

o Linear feedback rudder control law

Osat Saturation value of é

P Vehicle heading angle
Natural frequency of the ITAE control law

1 INTRODUCTION

Accurate path control of surface ships and underwater
vehicles along prescribed geographical paths is a funda-
mental problem which is becoming increasingly impor-
tant, particularly as the missions of ocean vehicles
become more sophisticated with strict requirements for
performance. In order for a control law to be able to
perform its mission in a realistic operational scenario it
has to be robust enough so that it can maintain a
stability and accuracy of operations in the presence of
modeling errors and environmental uncertainties. The
robustness properties of the design are particularly
important due to the unpredictable nature of the ocean
environment and the changes in the hydrodynamic
characteristics of the vehicle during turning, changes in
the forward speed, or operations in proximity to other
objects in the area. For these reasons, there exists a need
for the analysis of the robustness characteristics of a
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particular control law design and the establishment of a
rational operational envelope based on stability and
performance criteria. Previous studies' showed that gain
adaptation is highly desirable due to changes in the
linearized vehicle hydrodynamics with different operat-
ing conditions, such as depth under keel. The resulting
adaptation scheme? required significant vehicle motion
which may be undesirable when operating in restricted
waters, or during object recognition and localization
tasks. Integral control techniques® proved quite effec-
tive, but neglected the nonlinear behavior of the vehicle
which becomes very important at low speeds and hover
operations. Model based compensators exhibit robust
behavior under conditions of parameter uncertainty
which is as good as the classical linear quadratic
regulators for linear output feedback systems.* Alter-
natively, sliding mode controllers exhibit very robust
characteristics given an estimate of the parameter
uncertainty and/or disturbances.>® Sliding mode
control, however, does not offer an infinitely robust
design and it suffers from a series of bifurcation
phenomena and loss of stability unless proper care is
exercised.’

In this work the authors analyze the problem of the
loss of stability of a path keeping control law under
conditions far from nominal. We assume that the
autopilot has been designed based on a nominal
model, whereas the actual system is different. For
demonstration purposes we employ a linear full state
feedback control law, but the methods are quite general
and can be used for other designs as well. The main loss
of stability cases analyzed here occurs in the form of
generic bifurcations to periodic solutions.® We use
center manifold reduction techniques and averaging in
order to capture the stability properties of the resulting
limit cycles.’ Particular emphasis is placed on the
control gains as the primary bifurcation parameters,
since they are related to gain margins in linear control
theory.10 It is shown that the classical definition of the
gain margin which does not take into consideration the
influence of nonlinear terms, can lead to inaccurate
predictions with regards to practical system stability.
Extensive use is made of numerical integrations in order
to confirm the theoretical results. All computations in
this work are conducted for the NPS autonomous
underwater vehicle!! and all results are presented in
standard dimensionless quantities with respect to the
vehicle length, 7-3 ft, and nominal forward speed, 2 ft/s.

2 PROBLEM FORMULATION
2.1 Equations of motion

The linear maneuvering equations of motion of a marine
vehicle in the horizontal plane are written in dimension-

less form as,
mO+r+xgf) =Y+ Y0+ Yr+ Y,u+ Yb
(1)
sz‘*'me(’l:)‘FY) = N,r+va+ N,r+ NU’U+ N55
2)

where standard notation is used and all symbols are
explained in the Nomenclature. Equations (1) and (2)
can be used to derive a second order transfer function
between the rudder angle 6 and yaw rate r. The
fundamental dynamics of turning are captured by a
simpler version, where a first order lag exists between 6
and r,

F=ar+ bé (3)

Equation (3), which is sometimes referred to as
Nomoto’s first order model,'? is particularly useful in
control system design since no sway velocity feedback
is necessary. For small unmanned vehicles where the
available space is a minimum, this is important since it
eliminates the need for side slip angle sensors. Typical
dimensionless values for a and b for the NPS vehicle are
a=—147 and b= —2-86. Equation (3) predicts the
linear variation of the steady state turning rate versus
rudder angle. In reality, the r—é curve has the charac-
teristics of a softening spring mainly due to speed loss
during turning. To account for this, a modified version
of (3) is used, namely

F=ar+ayr’ + bo 4

where a3 is usually determined from steady state results.
Typical r—é curves for the NPS AUV are shown in
Fig. 1. The nominal value of a; is taken to be —1-0 in
this work, although its actual value varies considerably
in practice due to a variety of unmodeled dynamics and
changes in the vehicle characteristics. Finally, the model
is completed by the incorporation of the kinematic
equations,

=r (5)
y=siny (6)
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Fig. 1. Steady state r—4 curves for different values of a;.
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where ¢ is the vehicle heading, and y the cross-track
error off a desired straight line path.

2.2 Control law
A linear full state feedback control law is based on the

linearized version of eqns (3), (5) and (6) around the
nominal state ¢y = r =y =0,

w=r
F = ar + b§, (7
y=qv

where &, is the feedback rudder angle for small
deviations of 1, r, y from the nominal,

by = kwﬂ + krr + kyy (8)

The closed loop characteristic equation is obtained from
(7) and (8),

N — (a+ bk,)N — bkyh — bk, =0 (9)

If the desired characteristic equation has the general
form

M+ +or+tog=0 (10)
the control gains are computed from,
o=
YT
ay+a
k== — (11)
)
ky = - 7

The coefficients oy, @, a; can be tuned so that the
closed loop system has the desired dynamics. For
demonstration purposes, eqn (10) is tuned to the ITAE
optimal form for third order systems,

o =215, o =175, (12)
The natural frequency w, can be selected according to
the desired controller bandwidth.'® Higher values of Wy
correspond to a more responsive control law and
increased rudder activity. In order to capture the effect
of rudder saturation, the commanded rudder angle is
given by

§ = b, tanh (66—0) (13)

sat

3
Qp = Wy ,

where & is the slope of § at the origin given by (8), and
by 1s the saturation limit on & typically set at 04
radians. The hyperbolic tangent function (13) is used
instead of a hard saturation function because of its
analyticity properties. As we will see in the following
sections, the slope §, and the limit 6y, are much more
important than the actual functional form utilized to
model saturation effects.

2.3 Loss of stability

The previously defined control law will guarantee

stability and performance provided the vehicle model-
ing properties are accurately known. An important
quantity in assessing the robustness of a particular
control law design to parameter variations and
unmodeled dynamics is the gain margin. This is defined
as the extent to which changes can be inflicted on the
system gain without loss in stability. To this end, it is
assumed that the heading error gain k,, is multiplied by a
constant C. In order to compute the critical value of C
for the stability of straight line motion,

§ = Chyp + kor + kyy

is substituted into (7) and the characteristic equation
obtained

2
X — (a+ bk )N — Cbkyh — bk, = 0

Loss of stability occurs when the Routh—-Hurwitz
criterion is violated,

(a + bk,)Cbk, = —bk,

and using (11) this yields the critical value of C for
stability,
@
Cy,=—— 14
Y= oo (14)

or, using (12),
Cy = 0-2658 (15)

Stability is lost when C becomes less than Cy. Using
similar calculations for the yaw rate gain k., one can
find,
ag + oja wy + 2-15a
C, = = 16
r al(az -+ a) 215(175wn + a) ( )
As shown in Fig. 2, the system is stable for C < C, when
wy, < —a/1'75, and for C > C, when w, > —a/l-75.
Finally, the corresponding calculations for the posi-
tional error gain k,, yield

oo = 37625 (17)

and the system remains stable for C < C,.
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Fig. 2. Critical value C, versus wy.
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Fig. 3. Time history (1,y) for w, = 1-0 and C = 0-3C,.

As the coefficient C crosses its critical value, Cy, C,
or C,, one pair of complex conjugate roots of the
corresponding characteristic equation of the linearized
system crosses the imaginary axis transversally. This is
known as a generic Poincaré—Andronov—Hopf (PAH)
bifurcation,® and a family of periodic solutions coexists
locally with the stable/unstable nominal equilibrium
state.

The bifurcation point is easily computed with linear
methods, as above. However, two equally important
questions remain to be answered, namely,

e do periodic solutions exist before or after the
bifurcation parameter crosses its critical point, and
e are the resulting limit cycles stable or unstable?

To address these issues, one has to isolate and study the
effect of the dominant nonlinear terms in the equations
of motion. As a motivation for this study, the problem is
first demonstrated through a series of numerical
integrations. Figures 3 and 4 present simulation results
in terms of the lateral offset y versus time ¢ for the case
C = 0-8C,. According to the stability analysis results,
this corresponds to stable straight line motion. The
simulations are performed for different initial conditions
in y, and the natural frequency w, is selected at 1-0 for
Fig. 3 and 2:0 for Fig. 4, respectively. Although the
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Fig. 4. Time history (z,) for w, = 2:0 and C = 0-8C,.

linearized stability results do not distinguish between
different values of w,, an important qualitative change
in the simulation results is observed. For w, =10 it
appears that solutions converge to the nominal path
regardless of the initial disturbance. On the other hand,
for w, = 2-0 convergence is guaranteed only for initial
disturbances that are small enough. If this is not the
case, it appears that the solutions are attracted by a
stable limit cycle. The nonlinear techniques employed in
the following section should be able to predict and
explain these two phenomena.

3 HOPF BIFURCATIONS
3.1 Normal form computation

The complete system is given by

Y=r

F = ar + ayr’ + b6y, tanh [i (Chytp + ker + kyy)

y=siny (18)
or, in compact form,

x=1(x), x=[ry" (19)

where the analysis focuses on the heading error gain
factor. System (19) is written in the form,

x = Ax + g(x) (20)

where A is the Jacobian matrix of f(x) evaluated at
x =0, and g(x) contains all nonlinear terms of eqns
(18). Expanding g(x) in Taylor series and keeping the
first nonvanishing coefficients only, the following is
obtained

x=Ax+g%(x) (21)
where g (x) contains third order terms,
g’ =0
o__ b g 22
g2 3633[ 0 ( )
gg3) _ %"ZP

The 68 term in (22) can be easily computed in terms of
the gains k;, k;, ky, and the factor C.

At the bifurcation point, C = C,, matrix A has the
eigenvalues

Oy . (O .
/\1 = a—(z)l s )\2 = — a—:l s )\3 = —0 (23)

If we introduce the transformation matrix,
1 0 1
T=|0 —Voo/or —c
0 Vorlag -1/
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the linear change of coordinates,

x=Tz, z=Tx (24)
transforms system (21) into its normal form,
=T 'ATz+ T 'g¥Tz (25)

Equation (24) can be used to obtain the relationships
between the physical variables ¥, r, y and the
transformed variables,

h=1z|+1z3

¥ = — %ZZ — Q3 (26)
V a
_ o, 1
y= aozz o z3

Coordinate z4 corresponds to the negative eigenvalue X3
in (23) and is, therefore, asymptotically stable. The PAH
bifurcations are localized on the center manifold of (20),
a two dimensional surface that is locally approximated
by the Euclidean plane spanned by the eigenvectors of A
which correspond to the purely imaginary eigenvalues
A; and ),. Center manifold theory® establishes that the
stable coordinate z; can be expressed as a function of the
critical coordinates z,, z,, and this relationship is at least
of quadratic order. In fact, due to the symmetry of the
problem, z; = O(z‘;' , zg). Therefore, z3 has zero con-
tributions to the third order expansions in (25), and one
can approximate (26) by,

"p:Zla r=- 29227 y= %ZZ (27)
V o2 Vao

Substitution of (27) into (25) yields,

. () 3 2 2 3
) = _’/a_22 +rnzi +rpzizy +ri3zizs +raz; (28)
2

. &1} 2
=% +ruzt + rpzizy + 1z + ruz (29)
87}

where the terms r;; are evaluated from (22) and (27) at
the bifurcation point Cy,.

For values of C close to its critical value, eqns (28)
and (29) become,

.y Qo / 3 2
Iy =dez) — o~ +we )zo +rz] +rpziz;
2

+ 3125 + s (30)
. o
Zy = (1 /a—z + w'e)zl + a'szz + I‘ZIZ% + rzzz%zz
2 3
+r22122+r2422 (31)

where ¢ is the difference between C and Cy,

20 4e (32)
£310%]

CZCw+E=

The terms o' and o’ denote the derivative of the real
and imaginary part, respectively, of the critical pair
of eigenvalues A;, A\, with respect to C evaluated at

C,. These can be computed using a regular pertur-
bation series approach,’ as follows. The characteristic
equation of the linearized system matrix A is

Mt an?+ (Z—Z-}—ale))\—i-ao =0 (33)

The complex conjugate eigenvalues are expressed as

A =deT (, /Z—‘z’ + w’s)i (34)

If (34) is substituted into (33) and terms of order £* or
higher are neglected, one gets

2

’ 273431 / L, g
o = — — w = — -_ 35
2(ap + 03) 2ap+a3) Ve (33)

The third order terms in (30) and (31) remain the same
as in (28) and (29). These are evaluated for £ = 0 since
additional terms of the form ez} are higher order
compared to z; and can be neglected.

3.2 Integral averaging

Writing eqns (30) and (31) in the form,
2 = dezy — (wo +'e)zy + Fi(21,22) (36)
2y = (wy + oe)z) + dlezy + Fr(21,2) (37

where wy = \/ag/ @y, if polar coordinates are introduced
as

z; = Rcosf, z,=Rsinf (38)
eqns (36) and (37) result in
R=0/eR+ Fi(R,0)cosf + F>(R,0)sin 8 (39)
R = (wp +'€)R + F5(R,6) cos — Fy(R,0)sinb
(40)

Equation (39) yields
R=dcR+POR (41)

where P(#) is a 2m-periodic function in the angular
coordinate 8. If (41) is averaged over one cycle in 6, one
gets an equation with constant coefficients,

R=0oeR+ KR (42)
where
1 2r
K= 7/ P(9)de (43)

Carrying out the indicated integration in (43) results
in,

3
a) + o
=22 0

2
as 1 (87} 2
3a; S0 + s (az + a) (az +a )

sat

802
(44)

Similar averaging is performed for eqn (40), which is
written as

0 =wy+u'e + MR? (45)
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where

M =23y + 13 —rip — 3ris) (46)

OOIr-

and the coefficients r; are given by,

3/2 5/2
r (03 + o) %o + %
21 = (2 T O
3b26§ata;/ 2 604(3)/ 2
C!1/2 &
ryy = — 3/2 (a2+a0)b26 )
sa

172
_ (% 3 a
2= (a2> (02 + 00) gz

3
e
Fig = — (a—(2)> (a% + a()) ((13 + 3262 )
sat

The existence and stability of limit cycles can be
determined by analyzing the equilibrium points of the
averaged equation (42), which correspond to periodic
solutions in z;, z, as can be seen from (38). From eqn
(42) it can easily be seen that:

1. If & > 0, then
(a) if K >0, unstable periodic solutions coexist
with the stable equilibrium for ¢ < 0, and
(b) if K < 0, stable periodic solutions coexist with
the unstable equilibrium for ¢ > 0.
2. If & <0, then
(a) if K > 0, unstable periodic solutions coexist
with the stable equilibrium for £ > 0, and
(b) if K < 0, stable periodic solutions coexist with
the unstable equilibrium for ¢ < 0.

We refer to K < 0 as the supercritical, and K > 0 as the
subcritical PAH bifurcation. In the supercritical case,
after the equilibrium state loses its stability the system
converges to a stable periodic solution with an
amplitude which increases continuously as the differ-
ence ¢ is increased. In the subcritical case, however,
before the equilibrium state loses stability, its domain of
attraction becomes very small since it is bounded by
the amplitudes of the unstable limit cycles. In such a
case, an initial disturbance of sufficient magnitude can
throw the system off the nominal path even before its
domain of attraction has completely shrunk to zero. As
the nominal equilibrium becomes unstable, the system
jumps to a different state of motion with a locally, at
¢ = 0, discontinuous increase in the amplitude.

For the case of yaw rate gain variation, similar
calculations yield,

1
Y=z, r=—yozn, Yy=-—=I, W=
V2
3/2
" _a?(aﬁ'“) ’_ _aoal/ (o2 +a)

H

2(ad + o) 2(ad + o)

1
IC=§(3r“ + ri3 + o + 3ry)

1
M= 2B+ —rp— 3r14)

where
aoa% oq 1 & a0a1
n= WeE, 6)° CT R,
0 +o sat at aO + al
a o
rpn =

202 2 39
boL of+ o

of + a@
"4 =—F—3 "\ BT 755
o+ o 36262,

1 ail/z a(z,a}/z
M =—"5"3 7+
o + aq \3b755, 6

2 9/2 72
a oz1 a aoal

rp = :
Iyl 12 1282
b ésat a3+’ b 8%, ad+of

5/2 3
ra= -2 [ 2 L4
BN RN 35282
af + a7 \ 3b°b5,

Finally, for the case of the positional error gain
variation,

F3 =

1
r=—\oyz, y=—=2, W =v&¥

Y=1z,
1 e
% P %%
2(a) +a3)’ 2, /o () + A3)
1
IC=§(3r“+r13+r22+3r24)
1
M= §(3r21+r23—r12—3r14)
where
S a l a%
"TT 226 308,
2 2 3
a oo a o
ra = 2 T2 :

bzézI o +o3’

r a% + @
= — a —_—
B+ a2\ 3,

SO/ 2VLT (R S
o of + oy \30%8%, ®m 6
2 0‘?/2 o

a @)
rp =
bz&sat oy + az

a
22 2
bésal a1+a2

3/2 3
rig = — il W a + a
BT e a2\ 3676,

r3 =
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3.3 Results and discussion

Using the ITAE coefficients (12), one can express the
previous formulas in terms of the control natural
frequency w, as follows:

1. Heading angle gain variation k,,
wp = 0756w,
o = —0684w,

2
2 73}
K: =0452 3a3wn + 32‘323;

X (wh + 0-5714awh + 1-756%w, + @ — 1-5318w,)

2. Yaw rate gain variation k.,
wy = 1466w,
o = —1-577(1-75w, + a)

K =0-0528 | 13-8675a3w? — 0-5w,

2-15
+ b_zéz—wle(wu +2:15a) (21502 + @)

sat
3. Position error gain variation ky,
wy = 1466w,
o' = 0:0956w,

K =0-0515|6-45a;02% — 0-875w,

+2leiwﬁ(1~75wn +a)(2:150% + d°)
b* 65
In the following, results are presented for the case of &,
variations only. The rest of the cases are qualitatively
similar to the ones presented here."

The nonlinear stability coefficient K is shown in Figs 5
and 6 versus w, for different values of the rudder
saturation limit 6y, (in radians) and the nonlinear yaw
rate coefficient a;. It is recalled from Section 2.3 that the
stability of straight line motion is lost for a value of &,
which is 3-7625 times its nominal value. This is true
regardless of the values of the selected natural frequency
wp. Therefore, in a linear sense, the gain margin is
constant and does not distinguish between high or low
gain control as evidenced by the magnitude of w,.
The nonlinear results, however, show a considerable
dependence of the robustness properties to parameter
variations and unmodeled excitation, on the particular
choice of the design parameter w,. It appears that low
gain control design, i.e. corresponding to relatively low
values of w,, results in supercritical PAH bifurcations.
Small amplitude oscillatory motions are generated after

0.2
ay = —1

0.1 0.2 03 Jou4

0 0.2 0.4 0.6 0.8 t 1.2 1.4 1.8

Wn

Fig. 5. Variations in k,: nonlinear coefficient X versus w, for
different 8g,,.

the nominal equilibrium state loses its stability. Before
the critical point is reached, its stability properties are
not affected by other nearby attractors in the phase
space. The gain margin in such a case would, therefore,
represent a true measure of the robustness of the system.
Higher values of w,, however, inflict a change in the sign
of K. This represents a transition from supercritical
to subcritical PAH bifurcations, as is schematically
shown in Fig. 7. The domain of attraction of the stable
nominal equilibrium is becoming increasingly small
as the critical point is reached, and its outer bound is
given by the unstable limit cycle. Therefore, in such a
case it would not be appropriate to rely solely on
the critical value C, as a measure of the robustness of
the system. The estimated level of external disturbances
must also be taken into consideration since, as shown
in Fig. 7, sufficiently large perturbations can throw
the vehicle off to an oscillatory steady state even
before the critical point is reached. Of course, higher
values of w, correspond to a wider bandwidth more
responsive system, and the final choice will have to
be a compromise between speed of response and
robustness.

bpur = 04

L L " i L
0 0.2 0.4 0.8 0.8 1 1.2 14 1.6 1.8 2

Wn

Fig. 6. Variations in k,: nonlinear coefficient K versus w, for
different a;.
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Fig. 7. Supercritical and subcritical Poincaré—Andronov—Hopf bifurcations.

From the results shown in Fig. 5, it can be seen that
there exists a value of w, where the value of K is
independent of the particular value of 65, and is in fact
negative. This is a very important property of the system
since it can dictate the appropriate range of values of the
design parameter w, which will ensure the existence of
supercritical PAH bifurcations. To explain this prop-
erty, use the expression for K,

K =0-0515|6-45a;w2 — 0-875w,

+ 22.—125—%21(1-750.),, + a)(2:15u2 + d°)
b 683[
It can be seen that X will not depend on &, for,
a
175
and using a = —1-47 it is found that w, = 0-84 which

confirms the results of Fig. 5. The corresponding value
of K is

K = 0-0515a(2-106aza + 0-5)

which since a <0, a3 <0, is always negative, thus
ensuring supercritical bifurcations. For a = —1-47,
a; = —1, we find K = —0-272, which agrees with the
results of the figure.

Due to their practical significance in operations, it is
desirable to design the system such that supercritical
PAH bifurcations will appear upon initial loss of
stability. Transitions between subcritical and super-

Wy =

critical bifurcations occur at precisely those parameter
values where the nonlinear stability coefficient, K,
crosses zero. For the case of position error gain
variation, the condition X = 0 results in,

215wy (175w, + @)(2:1503 + a)
B2(0-875 — 6-45a3w,)

‘ﬁat = (47)
A plot of (47) is shown in Fig. 8. As expected, the critical
value of &, is reduced for decreasing w, and aj.
Supercritical PAH bifurcations are ensured, for a given
vehicle and control law design, for values of &g, higher
than its critical value. Since, as shown by (47), this is
directly related to the rudder coefficient b, it can be utilized
as a direct design criterion linking the occurrence of
supercritical PAH bifurcations to rudder size.

0.5

0451

0.4

0.351

0.3

Wr,

Fig. 8. Critical 8, versus w, for different a;.
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From the results of this section it can aiso be seen that
in the case of unlimited control effort, 6, — oo, all
PAH bifurcations are supercritical, K < 0. This is
particularly true for the case of yaw rate and position
error gain variations. For the heading angle gain
variation, the bifurcations would be supercritical only
when a; < 0. If a; =0, the cubic coefficient X would
vanish identically, and one would have to resort to
higher order expansions to unfold the nature of the
bifurcation.?®

The analytic results confirm the early numerical
simulations of Figs 3 and 4. Figure 3 corresponds to a
supercritical bifurcation, and convergence to the nominal
equilibrium is ensured regardless of the initial conditions
used in the integrations. On the other hand, Fig. 4
corresponds to a subcritical bifurcation. Convergence to
the stable equilibrium occurs only when the initial
conditions are located within the unstable limit cycle
which is schematically depicted in Fig. 7. A systematic
numerical search can be utilized to determine the actual
amplitude of these unstable limit cycles, and is the
subject of the next section.

4 PERIODIC SOLUTIONS
4.1 First order approximations

A first order approximation of the limit cycle amplitudes
can be obtained from the averaged equation (42). All
results presented here correspond to the case of the
position error gain variation, k,. Limit cycles in the original
coordinates correspond to the non-trivial stationary
solutions of (42), or,
!
a'e
R=-— 48
- (48)
where for the case of position error gain variation,
e=C—37625
Substituting the expressions for o/, ¢ and K into (48)
results in,

R =
B 1-8563b%6%,(C — 3-7625)
B262,(6-45a3uy, — 0-875) + 215w, (1-75w, + a)(2-15w3 + a?)
(49)
The lateral deviation y in the original coordinates, can

be approximated by (27) which, using the ITAE
coefficients becomes,

=132 pein(r+ ¢) (50)

Wn

In eqn (50), ¢ is an arbitrary phase angle, whereas the
angular frequency w can be estimated from,

w=wy+we
= 1-466w, + 0-1145w,(C — 3-7625)

Typical results for the first order amplitude expansions y
versus C and for different values of w, are presented in
Fig. 9. Stable attractors are generated for increasing
values of C/C,, whereas unstable attractors exist for
decreasing values of C/C,.

4.2 Numerical simulations

The previous results rely on small amplitude expansions
in the vicinity of the bifurcation point and are, therefore,
valid only locally in a qualitative sense. In order to gain
more insight into the existence of stable and unstable
limit cycles, one can perform a systematic numerical
search, guided by the theoretical results. A series of
numerical integrations was conducted for w, = 1-0 and
wy = 20 in the neighborhood of C, = 3-7625, and the
results are presented in Fig. 10. For the subcritical PAH
bifurcation, it is observed that the resulting unstable
limit cycles initially point towards decreasing values of
C and then they regain their stability and veer towards
increasing values of C, as shown in Fig. 10 by the w, =2
case. Such bifurcation portraits are typical in systems
with symmetry.® Although such subcritical PAH bifur-
cations near a degenerate point of the type,

R=deR+KR + LR’ (51)

such that the unstable limit cycle exhibits a saddle node
bifurcation to yield a stable one, may occur for all
systems, the analysis is significantly easier for symmetric
systems such as the present one. The existence of two
limit cycles can occur if the averaged steady state
equation,

LR+ KR +d/e=0 (52)

admits two real positive solutions in R?, which depends
on the signs of o/, ¢, the cubic coefficient K, and the
quintic coefficient L.

The results of Fig. 10 demonstrate the practical

0.3

02|
y oust
o1t

0.05 p--- RO

1.05

¢/,

Fig. 9. First order approximations of amplitudes of limit cycles
versus C for a; = —1, = 0-4, and for different values of w,.
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Fig. 10. Numerically computed amplitudes of limit cycles
versus C for a3 = —1, by, = 0-4, and for two values of wy.

consequences that are revealed by the nonlinear stability
analysis. In the supercritical PAH bifurcation, w, = 1-0,
the linear stability calculations can be considered as
reliable. The gain margin, C,, indeed provides a practical
measure of the allowable range of variation of the
positional error gain k, which will maintain the stability
of straight line motion. On the other hand, for the
subcritical bifurcation, w, =20, the linear stability
calculations should be viewed with caution. The gain
margin is not a good indicator of robustness in this case,
since it does not guarantee stability of straight line motion
under finite disturbances. As Fig. 10 shows, stability is
guaranteed provided the gain margin C, does not exceed
approximately 65% of its theoretical value. This becomes
progressively smaller as the natural frequency w, is
increased, which results in higher positive values for K.

5 HYDRODYNAMIC COEFFICIENTS
SENSITIVITY

5.1 Loss of stability

Similar studies can be performed in order to establish the
sensitivity of the system to changes in the hydrodynamic
coefficients ¢ and 6. Equation (3) is substituted by,

F= Car+bb (53)
Then, the critical value of C, denoted by C,, is
computed by,

(p +a@)ay — g 1:28484w,
aoy N

C, =

+1 (54)

Similarly, for variations in the rudder strength coeffi-
cient b, one gets

F=ar+ Ché (55)
with the characteristic equation,

M4 [Clay +a) —a]A* + Cay A + Cag =0 (56)
The critical value of C is,

C, = ag+aa;  wy+215a (57)

a(a; +a)  2:15(1-75w, + a)

which is the same as C, for variations in the yaw rate
gain k., eqn (16). Equation (57) is valid for as long as all
the coefficients of (56) are positive, i.e.

CbZO, Cb(az-i—a)—aZO

The system is unstable for ali values of the natural
frequency if C is less than zero. When the natural
frequency is in the range 0 < w, < |a/1-75|, the stability
changes from stable to unstable with an increase in C, for
positive C. In the range w, > |2-154|, stability changes
from unstable to stable as C crosses the critical point again
for positive C. In both cases, a pair of complex conjugate
eigenvalues crosses the imaginary axis. Stability is also lost
when C becomes negative, but this is associated with one
real eigenvalue crossing zero. In this work the authors have
concentrated on the C > 0 case since, in applications, it is
unlikely that a change in the sign of 5 will occur without
the designer’s knowledge.

5.2 Hopf bifurcations

Using similar center manifold reduction and integral
averaging techniques, the following results are obtained:

1. Variation in a,

wy = 1-466w,

o = —0-454a

2775K = !
B b26§at

1
x {67779%51 + (W‘L 14~5725w§>
n

X (—wd + (4 3wy — D)(1-75w, + a))

0-7166
B28L, "

— 0-7331wy, + 6777943032

+ (1-884w, + 1-4663a)’

2. Variation in b,

o feu 2150
0 P\ 175w, +a

v (wn+2:15a)(1- 75wy + a)
2-38w, + 4524

8(6:3725wk 4 aw, + 4-6225a) -
5 -

Wh
2-15a)?
2-15a%w, % — 1.075(w, + 2-15a)
n
9-9384w?
+Wﬂ‘l (21503 (wp + 2:15a)?

sat

+a(1- 75w, + a)(1 + 4-6225d%w,)]
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Results are presented by Oral'® and they are quali-

tatively similar to the gain variations studied previously.
Namely, supercritical PAH bifurcations occur for
values of w, up to a critical value, with the subsequent
evolution of subcritical bifurcations.

5.3 Sensitivity study

Of interest in applications is a sensitivity study of
the control system to inaccuracies in the modeling of
the hydrodynamic coefficients in (1) and (2). These
equations were utilized to produce the approximate first
order model (3) by substituting,

b== (58)

where K and T are Nomoto’s coefficients,

(Yi; _m)(Nr _me) + (Nr' - Iz)Yv

"= W, — mxg) - N(Y, —m)
_(Y,;—me)N,,+(N15—me)(Y,—m)
Yv(Nr_me) _Nv(Yr_m)
_ (Ny —mxg)Ys — (Ys —m)Ns (59)
NvY(S_ Ysz5
N,Y; — Y, N,
K vié viV§ (60)

B YU(NV _me) - Nv(Yr _m)

Typical results are presented in Fig. 11 where the ratio
a/Anom VErsus X/xp.m is plotted where x represents any
one of the four main hydrodynamic derivatives Y,, ¥,
N,, and N;. The results for b are similar. It can be seen
that the most significant inaccuracies in the determi-
nation of @ and b will most likely arise from inaccuracies
in the estimates of the yaw damping N, and the yaw
added mass N;, while sway velocity coefficients do not
play a significant role. Although this is especially true
for the NPS vehicle which has a particularly small side
slip during turning, the results should be considered
representative for most marine vehicles of conventional
hull shapes.
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Fig. 11. Typical hydrodynamic coefficients sensitivity results.
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Fig. 12. Stability contours (Cy,w,) with C, as a parameter.

In general, errors in the estimate of one or more
hydrodynamic coefficients will inflict changes in both
coefficients a and b. Therefore, one is forced to consider
a system of the form,

F = Cyar + Cpbb (61)
The characteristic equation based on (61) is,

M+ [Colog + a) — CoalA? + Coay A+ Coag = 0
(62)

Loss of stability of (62) occurs at the critical point,

Colay +a) - Ca =2 (63)
Q)

Equation (63), assuming that all coefficients in (62) are
positive, determines the stability contours of the system
for combined variations in a and b. Typical results are
presented in Fig. 12, where the regions of stability and
instability are similar to those shown in Fig. 2. Along the
critical curves shown in the figure, the system undergoes a
PAH bifurcation to periodic solutions, which can be
analyzed using the same techniques as before; the resuits are
qualitatively similar to the b variations studied previously.

6 CONCLUDING REMARKS

An analytic investigation of the nonlinear dynamic
response of a path keeping control law for marine
vehicles has been presented. Particular emphasis was
placed on a critical analysis of the control system gain
margins, as they are frequently used to characterize the
robustness to parameter variations and modeling errors.
Bifurcation theory techniques were utilized in order to
assess the behavior of the system upon initial loss of
stability of straight line motion. The principal
bifurcation parameters were the control natural
frequency, control saturation level, system hydro-
dynamic parameters, and control system gains. The
main conclusions of this work can be summarized as
follows:
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. There exists a critical point for a certain combi-
nation of system gains and system parameters for
the stability of straight line motion. The loss of
stability occurs generically in the form of Poincaré—
Andronov-Hopf bifurcations. As the parameter
crosses its critical value, a family of periodic orbits,
self-sustained oscillations, develops. Center mani-
fold reduction and integral averaging techniques
were used in order to establish the direction of the
bifurcation and the stability of the resulting
periodic solutions.

. A high closed-loop natural frequency is desirable
for wider system bandwidth and faster response.
However, it was shown that subcritical bifurca-
tions will develop for sufficiently high natural
frequencies. In such a case, the periodic solutions
develop with what appears to be a discontinuous
increase in the amplitude of oscillations. Further-
more, the stability of straight line motion before
the critical point is reached can not be guaranteed
for finite disturbances.

. Supercritical bifurcations are encountered for
sufficiently low values of the control natural
frequency. In this benign loss of stability, the
resulting periodic solutions are continuous single-
valued functions of the parameter distance from its
critical value. Global asymptotic stability appears
to be guaranteed for straight line motion prior to
loss of stability, for arbitrary levels of initial
conditions. The final choice for the control natural
frequency must be a compromise among speed of
response, path accuracy, noise rejection, and
robustness as measured by the nonlinear stability
coefficient K.

. The occurrence of subcritical bifurcations is
delayed by increasing the available control effort
and/or increasing the speed loss during turning.
Both of these options require higher energy con-
sumption and are, therefore, not practical. Instead,
a comprehensive examination of the nature of the
bifurcation must be undertaken in order to suggest
viable alternatives.

. The concept of gain margin should be viewed only
in conjunction with the nonlinear properties of the
system. It can safely represent a measure of
robustness for this system only in the case of a
supercritical bifurcation to periodic solutions. For
this reason, transitions from supercritical to
subcritical PAH bifurcations should be studied
during control system design, particularly if sig-
nificant modeling inaccuracies or deviations from a
nominal operating condition are expected.
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